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The notion of a nonlinear quantum dynamical semigroup is introduced, and the 
existence and uniqueness of solutions of the corresponding nonlinear evolution 
equations are studied in a more abstract framework. The construction of 
nonlinear quantum dynamical semigroups is carried out for two different 
mean-field models. First a mean-field coupling between a system of noninteract- 
ing subsystems and the bath is investigated. As examples, a nonlinear frictional 
Schr6dinger equation and a model for a quantum Boltzmann equation are 
discussed. Second, a many-body system with mean-field interaction coupled to a 
bath is considered. Here, again, the form of the generator is derived; however, it 
cannot be obtained rigorously, except for some particular examples. Finally, the 
quantum Ising-Weiss model is briefly studied. 
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description of many-body systems; mean-field models; nonlinear evolution 
equations; nonlinear frictional Schr6dinger equations; quantum Boltzmann 
equation; Hartree equation; Ising-Weiss model. 

1. INTRODUCTION 

In classical statistical mechanics the dynamics of most systems is governed 
by nonlinear kinetic equations on the phase space. Nonlinear evolution 
equations become exact in certain limiting situations from the underlying 
Hamiltonian dynamics. The Boltzmann equation, the Vlasov equation, and 
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the Landau equation are rigorous consequences of the microscopic dynam- 
ics in the low-density, the mean-field, and the weak-coupling limits, respec- 
tively. (1) On an abstract level the structure was uncovered and studied by 
McKean (2'3) under the notion of nonlinear Markov processes. 

In quantum theory of many-body systems one expects nonlinear 
quantum evolution equations. Known examples are the Hartree equation 
and its endowment with a linear dissipative generator for the Dicke- 
Haken-Lax laser model. (~) 

Here we investigate a certain type of nonlinear evolution equations. 
Global existence, uniqueness, and positivity of the solutions are studied in 
section 2 in a general setup. In sections 3 and 4 the canonical forms of the 
nonlinear generators are derived and discussed for classes of open quantum 
mean-field models. Generally, such models as the laser or the Curie-Weiss- 
Ising or BCS model are described by classical differential equations for the 
expectation values of the observables in the Heisenberg picture. (4-6) In this 
sense we present a treatment in the Schr6dinger picture which attempts to 
be a quantum generalization of McKean's nonlinear Markov processes. 

2. NONLINEAR EVOLUTION EQUATIONS 

For classes of quantum many-body systems we obtain in the next 
sections by mean-field and Markovian limits the following form of a 
nonlinear quantum evolution equation: 

= Lop - I -  L[p]p (1) 

Here L 0 is a linear, in general unbounded generator of a quantum dynami- 
cal semigroup. (%s) For given p, L[p] is a bounded perturbation. Let 
3-+ ( ~ )  be the Banach cone of positive trace-class operators on a separa- 
ble Hilbert space ~ .  We define as nonlinear quantum dynamical semigroup 
a one-parameter family of maps q~t onto ~--+(~P) which fulfills the 
following conditions for t >/O: 

(a) trOt(p) = trp 
(b) q~= o ~t = ~=+t 

(c) For every p ~ 3-+ ( ~ )  the function t-~@t(p) is continuous. 
In the following we investigate existence and uniqueness of global 

solutions of abstract evolution equations on Banach spaces. We aim at 
nonlinear quantum dynamical semigroups but the results are sufficiently 
general to include some classical dynamical systems. 

Let X be an ordered Banach space and X+ its positive cone. Let L 0 be 
the generator of a contracting positive semigroup with domain 2 (Lo) and 
~ ( X )  c ~ ( X )  the convex set of bounded generators of contracting 
positive semigroups. We consider functions L on X with L(x) E .~(X) for 



Nonlinear Quantum Dynamical Semigroups for Many-Body Open Systems 301 

every x E X, such that L ( X +  ) c ~ ( X ) .  We shall consider functions L 
subject to the following conditions: 

(L1) liZ(x)ll < Cl(llxl[ ) 

( t2)  Ht(x)  - t (y ) l l  < C2([Ixl[, IlYil)llx -Yll  

for every x, y ~ X. For functions L with L ( x ) . ~ ( L o ) C  2 ( L o )  for every 
x r 2 ( L 0 )  we  use the following conditions: 

( to l )  I l t o t ( x ) x H  < C3(llxll)lltoxll 

(t02) I l t o t ( x )  x - LoL(y )Y t l  < C4(ltxll, IIt0xll, rlYll, IIt0Ytl) 
• IIt0x - ZoYll 

where C,. (i = 1,2, 3, 4) are monotone increasing, everywhere finite func- 
tions. We consider the following differential equation: 

.~, = Lox ' + L ( x t ) x  ,, x o= x, t >l O (2) 

and its corresponding integral equation 

xt = eL~ + footeC~ (3) 

Let T > 0. For given n ~ ~,  0 < A < T, we define a function d9~ n'A) on X by 
the recursive relation 

~n'A~x = X for t = 0 (4) 

and 

�9 ~" ' a )x=exp((L0+ L(d~}~'A)x))(t-t~))d~}~'a)x for t E [ t k , t k + l ]  

(5) 

where ( t k / k  = 0 . . . . .  n + 1, t o = 0, t,+~ = T} is a partition of the interval 
[0, T] such that Itk -- tk+d < ~i. 

T h e o r e m  1. (i) Under the conditions (L1) and (L2) there exists a 
unique global solution of the integral equation (3) for x ~ X + .  Moreover, 
this solution x t is positive, Ilxtl j < Ilxll, and 

x t = s-lim ~"'a)x 
n-~oo 
A---~0 

uniformly on compact intervals [0, T] for arbitrary T > 0. (ii) If in addition 
the conditions (Lol) and (L02) hold then the solution x t to any x 

-~(Lo) N X+ is continuously differentiable and fulfills the differential 
equation (2). 

Proof.  We use the standard theorems from fixed point theory (see, 
e.g., Ref. 9). 
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(i) It remains to show that 

s-lim q)~n'~)x = x t 
n ---)" O0 

A ~ 0  

where x, is the local solution of (3) for some [0, T1]. Let 

= e r~ + fore ao(t-s) L (x,)xs ds (6) (Sx ) ,  

2' (S("'6)x)t = eLotx + eLo(t-S)L(~(n'A))xsds (7) 

with 2},,a) = xtk for s ~ [tk,tk+ 0 C [0, T1] where { t k / k  = 0 . . . . .  n + 1} is 
a partition of [0, T1] with It~ - t~+l[ 4 A. Let T I be sufficiently small, and 
let ~/(T1) = {x(.) :[0, T 1 ] ~ X ,  continuous and Ilx~.>llv~ = sup,~f0,~01Lx,[I 
< m}; then by (L1) and (L2) S and S ("'6) are contractions on ~ / (Tl ,e ,x  ) 
C ~/(Tl), which consists of those x(.) with x 0 = x and []x, - eL~ 4 e 

for t E [0, T 0. By inspection y},,a)= ~5"'6)x is a fixed point of S (~'6) on 
~/(  T~, e, x) and furthermore for any x(. ) E ~ / ( T  1, e, x) 

lim S("'~)x(.)= Sx( . )  (8) 
n --)" C~ 

A--~0 

Therefore by Ref. 10, Theorem V.21, y},,a) converges uniformly to x t. By 
the approximation qs~ "'~) positivity is preserved and ][xtH ~ I]x[[ if x ~ X+ . 
Consequently a global unique solution exists by Ref. 9, Theorem X.74. 

(ii) The smoothness of the solution with x E ~ ( L 0 )  follows from 
Ref. 9, Theorem X.74. �9 

Remark .  There are existence theorems under weaker conditions than 
Lipschitz continuity. For example if the Banach space is finite dimensional 
and (L1) holds, one can construct a global, but not necessarily unique, 
solution by Schauder's fixed point theorem if L(-) is continuous on X only. 

Example. Let L m be a bounded dual generator of a completely 
positive semigroup (7) on @~'=1~- (~) ,  ~ being a separable Hilbert 
space. Then it is immediate that the mapping L :  3-(~r ~) ~ p--+ L ( p ) E  
J2(J-( ;Yf))  defined by L(p)o  = tr[2 . . . . . .  ] (Lmcr@p@ �9 �9 �9 |  maps 
if-+ ( ~ )  into ~ ( 3 - ( ~ P ) )  and fulfills the properties (L1) and (L2). If L 0 
is a dual generator of a completely positive semigroup, then the solution of 
the integral equation (3) with the L(O) as above defines a nonlinear 
quantum dynamical semigroup. 

3. MEAN-FIELD AND MARKOVIAN LIMITS FOR QUANTUM OPEN 
SYSTEMS I 

We consider local observable algebras ~ A  = @i~A~i, where d i  
= ~.~(~F) is the C*-algebra of bounded operators on a separable Hilbert 
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space Jg~, and A is a finite subset of N. d A may be viewed as a subalgebra 
of @ i ~ : v J i  by the isotonic embedding d i  = ~, if i E A'\A, for all finite 
A' D A. The quasilocal algebra associated to the net of local rings { ~ A / A  
C N} is denoted by ~oo.  A state on ~eJ~ is locally normal if for every finite 
A C N the restriction ~0 A is given by a density matrix. It is called symmetric 
if o~(A) does not depend on the order of the Xi ~ ~ ( H )  for A = 
X 1 | �9 �9 �9 | X n, n E N. A state ~0 on do~ is a product state if for all finite 
A 1 C N, A 2 c ~ with A 1 A A 2 = 0 and X i E dA,  (i = 1,2), w(X1X2) = r 
~o(X2). Every symmetric locally normal state on Jo~  can be decomposed 
into normal product states 

f I~(~ I dP)~ (9) 

with a unique measure tz(. ]do) on Y + , I ( ~ ) ,  the set of density matrices 0 
on H . ( I  1-14) 

In the mean-field limit the particles move independently in an average 
"medium" depending on the states of the particles. Let AN(t ) denote the 
N-particle, in general irreversible, dynamics on d A with IA[ = N; then 
AN(t ) has the mean-fieldproperty if 

s - l imt rmNA u t O |  | = |  (10) t ,  J ( )  p p(t) |  

for every p E 3 - +  (~g~) and t > 0. tr[m,N l denotes the partial trace over the 
Hilbert spaces labeled by m, m + 1 , . . . ,  N, and trn denotes the partial 
trace over the nth Hilbert space. Here 

p(t) = r ip 

is called single-particle evolution. F t extends to a dynamics on the locally 
normal symmetric states by (9). 

In the following we study models with mean-field dynamics. They are 
all covered by a general theorem. 

Theorem 2. Let AN(t ) be the dual of a completely positive quantum 
dynamical semigroup with generator L(u N~, where 

L(~ s l=  - i  hi," + ~ Lq (11) 
i =  t 1 

h i are identical copies of a self-adjoint single-particle Hamiltonian h. L~j is a 
bounded operator on 3 - ( ~  i | ~ )  for i 4 : j .  If i < j  (respectively, i > j ) ,  
then the L/j are identical copies of L12 (respectively, L2~ ). If i = j ,  then the 
L/j are identical copies of the bounded operator L l l  o n  ~-(~( t '~) .  

Then AN(t ) has the mean-field property and the single-particle dynam- 
ics F t is the solution of the following integral equation: 

p(t) = Sl(t)p + s  - s)�89 + L2,)p(s ) | p(s)] ds (12) 
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where Sl(t  ) is defined by (17). If the solution of (12) is differentiable, then it 
satisfies the differential equation 

-- - i [  h,p] + �89 + L21)p| pl (13) 

Proof. Our theorem generalizes Theorem 5.7 of Ref. 1. Let p(.N)(t) 
= tr[n+l,Nl(AN(t)p @ �9 �9 �9 @ p); then 

= ~ ~(N)gt~ (14) [~(N) L(~N)o(~N)(t) + N-2Nn I,, t r ,+t(Lj ,+,  + gn+ljJ,n+l~ , 
j=l  

With the collision operator 

C~,n+ l = ~ trn+l(Ljn+l + Ln+lj ) (15) 
j=l  

the time-dependent perturbation series writes as (5.78) in Ref. 1, however, 
with 

s(,N~(t) = expL,(U)t (16) 

Since s(~N)(t) is a contraction semigroup the mth term of the perturbation 
series is bounded in trace norm I1" II. on ~ - ( |  by (5.79) of Ref. 1, 
if one replaces 4ILVI[ by �89 L211]. Now, as shown in Ref. 1, the 
perturbation series converges in trace norm for all t < t o to the form (5.80) 
in Ref. 1, where 

S.(  t)o. = s-limS(.N)( t)o. = e-m"'  o.e imt (17) 
N----> oo 

with H. = ~,7= 1hi �9 Then, as in Ref. 1, p(N)(t) converges for all t. 
Since the conditions (L1) and (L2) are satisfied the integral equation 

(12) has a unique global solution o(t). Using manifestly the construction of 
this solution, presented in the proof of Theorem 1, one finds that p.(t) = 
@"p(t) fulfills the hierarchy integral equation 

2' p . ( t )  = S . ( t ) p .  + S . ( t -  s)C...+,p.+l(S)ds (18) 

if On = @no. By similar arguments as those mentioned above, (18) possesses 
a unique solution which fulfills (5.80) of Ref. 1. [] 

In the following we discuss two examples of mean-field open systems. 
In both examples we consider a system with Hilbert space ~ N  = @ ,Iv-- 12~f 
and Hamiltonian ~N= lhl, with identical copies of h, coupled to a reservoir 
with Hilbert space ~ , ,  being the GNS representation space to a stationary 
state ~0. The interaction )~W u is assumed to be a bounded, Hermitian 
operator. Following standard procedures, (15'8'0 we obtain after performing 
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the weak or singular coupling limit a N-particle completely positive quan- 
tum dynamical semigroup with the dual generator L(N ~) of (11). 

Example 1: Nonlinear Frictional SchrOdinger Equation. We as- 
sume an interaction of the form 

N 

1 2 A,|  q~ (19 t 

where the Ai's are identical copies of a bounded, Hermitian single-particle 
operator A, and cp is a bounded, Hermitian operator on ~ , o .  We think of 
(19) as a crude model of a dissipative process as it might occur in nuclear 
physics or quantum optics. A mean collective variable is coupled to a field 
coordinate of the bath. In both the weak and singular coupling limit we 
obtain the N-particle master equation of Lindblad type: (7) 

= - i  E h i  �9 1 
j = l  k @ l = l  

N 
1 + ~-~ ~ E {[A~),PNA}~)*] +[A~)ON,A}~)*]} (20) 

k , l =  1 

Here the Bkt's are identical copies of a bounded Hermitian two-particle 
operator BI2 = B21. The manifest form of the A (~)'s and the BI2 in terms of 
A, h, and the correlation function of the bath can be found in the 
literature. (15'16'8'1) By Theorem 2 and assuming differentiability of the 
solution we are led to the following single-particle dynamics: 

{~= - i [h+ HI[P]  + H2[p],p I (21) 

H lIt)] = tr2B12 p (22) 

U2[p] = li~[tr(A(~)*o)A(~)-tr(A(~)o)A(~)* ] (23) 

For a pure initial state the time evolution conserves purity. This gives a 
foundation to nonlinear frictional Schr6dinger equations which have been 
introduced on phenomenological grounds. (17-19) If formally A (~) = a(~)P + 
b(~)Q, with ~ , I m b ( ~ ) * a  (~) = �89 BI2 = 0, h = (1/2m)P 2 + V(Q) + �89 
Q)  is inserted in (21)-(23) one obtains Siissmann's equation for friction 
constant 7 and e = 1/2. (17-19) 

Example 2: Stochastic Quantum Boltzmann Equation. Let us 
consider a N-particle system with Hamiltonian 

N 

H N = ~ ,  h, (24) 
i = 1  



306 Alicki and Messer 

where h i = h are identical copies with exp(- /3h)  being trace-class for all 
/3 > 0. Let ~f,o ,~  U ~-- = ~ > l = 1  a be the state space of a bath where g a  is a 
Hilbert space with distinguished vector ~, e.g., the Fock space with the 
vacuum state. The coupling between the system and the bath is given by 
the interaction Hamiltonian 

N 
1 ~ Qkl | r (25) WN- ~ k>l=l  

Here Qkl = Q21 E ~@(~  @ ~ )  for all l < k, and qPkt = q~ ~ ~ ( ~ - a ) .  Q21 
is a symmetric operator with respect to permutations of particles. The 
Fourier-transformed two-point function of the bath is denoted by 

t; (~) = f ~ o f i " ( a ,  ~21q021(t)Ft)dt (26) 

We furthermore assume that the level spacing for the single-particle Hamil- 
tonian h is bounded from below by some positive number E0, i.e., IE - E '  I 
/> E 0 > 0 for all different eigenvalues E,E' ,  and that /~(c)= 0 for all 
IEI/> E 0. Our ansatz is a mean-field version of Davies' model of heat 
conduction. (2~ The physical meaning of our ansatz consists in replacing a 
direct interaction by potentials between the particles by the impact of some 
intermediating reservoirs. The above conditions prevent an exchange of 
energy between the particles and the baths in the weak-coupling limit and 
the influence of the reservoirs are of stochastic type. 

After performing the weak-coupling limit (2~ we obtain the following 
Markovian evolution: 

- - - -  i 2 h j , P N  + 1  
dt j= l 2-U k~l=l 

with 

and 

Here, again Akl = A12 

LklPN (27) 

Ck, = -- i[ Bk,, "1 + Kk' (28) 

Kk, = -- [Akl, I Akl, ] ]  (29) 

= A21 E ~ ( ~ 2  "~ @ ~t'~), Bkl = BI2 = B21 ~ ~ ( ~  @ 
;~C ~) are Hermitian operators commuting with h i + h 2, 

[At2,hl@~+~@h2] =[B12,hlQ~+~]Qh2] =0 (30) 

in the sense of commutations with the spectral projections. The manifest 
form of A12 and BI2 is given in Ref. 20. Since (30), (L01), and (L02) are 
satisfied p(t) is differentiable for every p ~ _~([h, .]) and according to 
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Theorem 2, the reduced single-particle dynamics is governed by the nonlin- 
ear stochastic quantum Boltzmann equation: 

h = - i[h + H l [o ] ,o l  + tr2K12(P |  (31) 

with 

H , [ p l  = tr2B'20 (32) 

The name "quantum Boltzmann equation" is justified by the following 
properties of the evolution equation (31), (32), which we prove for finite- 
dimensional Hilbert space ~U: 

(i) The "energy" E = tr(p(t)h) is a constant of motion. This follows 
from 

/) = trbh = �89 { L12(P @ p)(h I @ ~ + ~ @ h2) } = 0 (33) 

using (30). 
(ii) The H-theorem is valid: 

d [ t r p ( t ) l n p ( t ) ]  = - t r ( t S l n o )  
dt 

= -- � 89174174  ] >/ 0 (34) 

using Theorem 3 of Ref. 21 and Lemma 1 of Ref. 22. 
(iii) The Gibbs states 0p = Z( /3) - texp( - /3h)  are stationary states of 

(31) for/3 > 0. 
These three properties carry over to the case of an infinite-dimensional 

Hilbert space ;gF, provided the time derivative of energy (33) and of 
entropy (34) exist. 

4. MEAN-FIELD AND MARKOVIAN LIMITS FOR QUANTUM OPEN 
SYSTEMS I I  

In this part we study a model of interacting particles as the system, 
which is coupled to a bath. Now the mean-field scaling appears in the 
interaction of the particles of the system and not in the coupling. We 
perform the mean-field limit first and investigate afterwards the Markovian 
approximation of the resulting reduced Hartree equation. Here our argu- 
ments are not entirely rigorous. 

The Hilbert space of the bath has the following structure: 
N 

~ =  |  

where ~ p  is the GNS Hilbert space related to the KMS state c0~ at inverse 
temperature /3 > 0. The Hamiltonian in this representation is denoted by 
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H B. The Hamiltonian of the total system is 
N N 

1 vk, (35) H i =  E (hi + + | + 
j = l  

Here, again, we use identical copies hj = h, Hj a = H a, Qj = Q ~ ~ ( ~ ) ,  
~j = r ~ ~ (H/0 ,  and Vkt = Vtk = V12 ~ ~(~fP | ~ ) .  We perform first 
the limit N o  oo. Using Theorem 2 one obtains 

N n 

l i m  tr[.+l N] (e -in~Nt ~ oe iH~' ] -= ~ o(t) (36) 
N--~ c~ ' \ ! 

where o(t) fulfills the integral equation associated with the following formal 
Hartree equation: 

ao (t) 
- i l h + H " + H l I t r a o ( t ) ] + ~ Q |  (37) 

dt 

where Hl[p ] = tr 2 V12 O, and tr R is a partial trace over the Hilbert space ~ B "  
Next we eliminate the reservoirs. Let O(t)= trao(t) and o(0)= O(0)| ~0~; 
then p(t) may be written as 

p ( t ) =  t ra(Texp(- is  }p(O)| oa/~ Texp { is ))  

(38) 

where Ha[0 ] = h + H a + Hi[p] + ~Q | r The above expression can be 
formally treated as a density matrix for an open system under the influence 
of the time-dependent potential HiX(r) = H([p(r)]. Therefore one can apply 
the methods used in Ref. 23 to obtain the integral equation for p(t), being 
"nonhomogeneous in time." We introduce, as usual, the projection tech- 
nique: 

Z[p]O = - i [ h +  Hl[p],p] 
A o = - i [  Q |  

(39) 
Po o = (trao) | ~0~, P1 = ~ -- P0 

A~j = P~APj, i, j = O, 1 

Let 

and 

Z(t) =-- Z[o(t) ] (40) 

Ux(t,s)= Texp~t[z( t ' )  + hA,,Jdt' (41) 
J S  
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The final result can be written as follows: 

o( t) = Uo( t, O)o(O) + ~ 2 fotdS foSdU [ Uo( t,s)Aol Ux( s, u)A jop( U) ] (42) 

One attempt to obtain the Markovian approximation for (42) might use the 
usual weak-coupling limit method. (15'23) Unfortunately, because the varia- 
tion of Z(t) might be more rapid than the duration of the relaxation time of 
the open system, we are not able to prove in general the existence of the 
Markovian limit. However, a formal derivation from Eq. (42) leads to the 
following nonlinear master equation: 

do - i[h+Hj[p],p]+X2L[p]o (43) dt 
where 

T---> oo -- (I) - 1 L i P i d =  lim ~T f_T/sfo~dt(h*(t)[( [p]s_tQ),K(dp[p]~lQ) 1 

+h(t)[(d~[pl;)Q)x,(ap[o]~l_tQ)l} (44) 

h (t) = ~0/~ (q0~ (t)) (45) 

_ _ (  [ ] ~ d t , ~ L p j t x , d  = _ i [h  + H l [ T t p ] , ( d P [ p ] t X ) ] ,  ~ [ p l 0 =  ~ ( 4 6 )  

d T t p =  - i [h  + Hl[TtP],Ttp], To= ] (47) dt 
The same result follows from applying first the weak-coupling limit, which 
gives the generator K s for a fixed N, and then the mean-field limit for 
t r t n + l , N  l {KNO @ �9 �9 �9 @ p ) .  Although a precise treatment of the Markovian 
approximation is inaccessible, we are able to extract some rigorous informa- 
tion about the stationary states for our model in the weak-coupling limit. 

Let fix(t) be given by (38) with 0(0)= p~. The state O~ is called 
stationary state in the weak-coupling limit if 

l i m /  sup 1 } = 0  (48) x--,0 L ,~[O,T] ~-[It;x(t) - P~lll 

for all T > 0. 

Theorem 3. Let d i m ~  < o9. The states which fulfill the following 
equation: 

p~ = e--B(h+ t4~tP~]) /tr e--l~(h+ H'[P~]) (49) 

are the stationary states in the weak-coupling limit. They are the only such 
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states under the following conditions: 

(i) h(~) = f_~ h(Oe'~t dt> 0 (50) 

(ii) { h + H ,  IpI, Q } ' = { C ~ }  for all p ~ 3 - + , , ( ~ )  (51) 

Here {A }' denotes the commutant of {A }. 

Proof. Let Po~ be a stationary state in the weak-coupling limit. Then 
one can expand the right-hand side of (42) with respect to h: 

+ O(~k 3) (52) 

where 

Uo(t,s) = e x p { - i [ h  + H,[p=] , .  ] ( t -  s)} (53) 

Taking into account (48) we have 

[h + = 0  (54) 

Then we follow the usual approach (~5) for time-independent Hamiltonians 
Ho~ = h + Hi[pool. One concludes that ~o~ is a stationary state for the linear 
generator Ko~, 

Koop = T-->oo 
(55) 

with 

Qt ~ = e iH=tQe -iH~t 

The propositions of Theorem 3 are now consequences of the well-known 
results on stationary states of a quantum open system coupled to a heat 
bath.(24'25) �9 

Remarks.  Theorems 3 presents a dynamical approach to the prob- 
lem of equilibrium states for mean-field models (compare with Ref. 26). In 
general the solutions of (49) are not unique. This is related to the occur- 
rence of phase transitions in mean-field models. Among other conditions 
on the potential uniqueness of the solutions holds for temperatures high 
enough. The generator K~ = L[po~ ] [cf. (44)-(47)] describes the linearized 
evolution in the neighborhood of the stationary state 0~. It may serve to 
investigate the stability of the stationary solutions. 

Example: Ising-Weiss Model. We consider as a simple example 
the open Ising-Weiss model studied from a different point of view in Ref. 
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5. For this model the nonlinear generator L[O ] has a simple form and 
describes a well-defined nonlinear quantum dynamical semigroup. Let 

= C 2, h = O, V12 = - Jo~o 3, Q = 01. Let oj 1 , 02, 4 be the Pauli matrices 
for the j th  spin, and 0 .+ = �89 _+ i02). In this case 

L[plr.  = / ~ ( - 2 J t r ( p o 3 ) ) { [ o + , ~ : o -  ] + [o +~:,o- ])  

+l;(2Jtr(po3))([o-,xo+ 1 + [ o - x , o  + ]} 

+ i ( s ( 2 J t r ( p o 3 ) ) -  s ( -2J t r (pa3 ) ) } [o3 ,  x I (56) 

where 

and 

fo~ dt eiah( t) = 1 A ~ h  (Q + is(e) (57) 

/~ ( -  e) = /~ (Qe  -~" (58) 

is the KMS condition for the bath. If/~(c) and s(E) are Lipschitz-continuous 
on [ - 2 J , 2 J ] ,  then by Theorem 1 the equation of motion 

= iJ[tr(po3)o3,p] + X2L[plo (59) 

possesses a unique global solution for all initial density matrices 00. The 
stationary states for (59) are given by Eq. (49). For J > 0, /~'(E) > 0, and 
/3 >/3c = J -1 there are two stable stationary states and one unstable. For 
/3 </3c the stationary states are unique and stable (compare with Ref. 5). 
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